Section 3.7 The Chain Rule

(1) Compositions
(2) The Chain Rule

Example I

Review: Composition of Functions

If f and g are functions, then their compositions $f \circ g$ and $g \circ f$ are:

$$
(f \circ g)(x)=f(g(x)) \quad(g \circ f)(x)=g(f(x))
$$

For example, if $f(u)=\sqrt{u}$ and $g(x)=\frac{1}{x-3}$ then

$$
(f \circ g)(x)=\sqrt{\frac{1}{x-3}} \quad(g \circ f)(u)=\frac{1}{\sqrt{u}-3}
$$

Note: Composition should be read "inside out" - when you calculate $(f \circ g)(x)=f(g(x))$, you apply g (the innermost function) first.

It's possible to compose more than two functions at a time:

$$
(f \circ g \circ h)(x)=f(g(h(x))) \quad(f \circ g \circ h \circ k)(x)=f(g(h(k(x))))
$$

The Chain Rule

If g is differentiable at x and f is differentiable at $g(x)$, then the composite function $H=f \circ g$ defined by $H(x)=f(g(x))$ is differentiable at x, and its derivative is

$$
H^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x) .
$$

 Outside Derivative (Inside Untouched) \times Inside Derivative

In Leibniz notation, if $y=f(u)$ and $u=g(x)$ are both differentiable functions, then

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}
$$

Example II

(I) To find $\frac{d}{d x}\left(\sqrt{x^{3}+x}\right)$:

Step 1: Write $\sqrt{x^{3}+x}$ as a composite function $f(g(x))$.

$$
\begin{array}{ll}
y=f(u)=\sqrt{u} & \frac{d y}{d u}=f^{\prime}(u)=\frac{1}{2 \sqrt{u}} \\
u=g(x)=x^{3}+x & \frac{d u}{d x}=g^{\prime}(x)=3 x^{2}+1
\end{array}
$$

Step 2: Apply the Chain Rule.

$$
\begin{aligned}
\frac{d}{d x}\left(\sqrt{x^{3}+x}\right) & =f^{\prime}(g(x)) g^{\prime}(x)=\frac{d y}{d u} \frac{d u}{d x} \\
& =\left(\frac{1}{2 \sqrt{x^{3}+x}}\right)\left(3 x^{2}+1\right)=\frac{3 x^{2}+1}{2 \sqrt{x^{3}+x}}
\end{aligned}
$$

Example II:

$$
\begin{aligned}
& \text { (I) } \frac{d}{d x}\left(\sqrt{x^{3}+x}\right)=\frac{3 x^{2}+1}{2 \sqrt{x^{3}+x}} \\
& \text { (II) } \frac{d}{d x}\left((2 x+1)^{3}\left(x^{2}-1\right)^{-2}\right)=\frac{-2(2 x+1)^{2}\left(x^{2}+2 x+3\right)}{\left(x^{2}-1\right)^{3}} \\
& \text { (III) } \frac{d}{d x}\left(e^{\frac{x}{x^{2}+1}}\right)=e^{\frac{x}{x^{2}+1}}\left(\frac{-(x-1)(x+1)}{\left(x^{2}+1\right)^{2}}\right) \\
& \text { (IV) } \frac{d}{d z}\left(9^{1-z^{4}}\right)=9^{1-z^{4}} \ln (9)\left(-4 z^{3}\right)
\end{aligned}
$$

Example III, Applications of the Chain Rule

As air is pumped into a balloon, the volume and the radius increase. Both volume (V) and radius (r) are functions of time. The volume formula for a sphere also expresses the volume as a function of radius:

$$
V(r)=\frac{4 \pi}{3} r^{3}
$$

Since radius is a function $r(t)$ of time t, the dependence of volume on time can be expressed as a composite function:

$$
V(r(t))=\frac{4 \pi}{3}(r(t))^{3}
$$

At $t=1$ minute the radius is 3 inches and growing at a rate of 2 inches per minute. How fast is the volume of the balloon growing?

$$
\frac{d V}{d t}=\frac{d V}{d r} \frac{d r}{d t}=4 \pi(r(t))^{2} r^{\prime}(t)=4 \pi(3)^{2}(2)=72 \pi \mathrm{in}^{3} / \mathrm{min}
$$

Example IV, Applications of the Chain Rule

If a spherical tank of radius 4 feet is filled to a height of h feet, then the volume V of water in the tank (in feet ${ }^{3}$) is given by the formula

$$
V(h)=\pi\left(4 h^{2}-\frac{h^{3}}{3}\right) \Longrightarrow V^{\prime}(h)=\pi\left(8 h-h^{2}\right)
$$

The tank is regulated by a faucet and a drain so that the height h of water at time t (in hours) is given by

$$
h(t)=t^{2}+t \quad \Longrightarrow \quad h^{\prime}(t)=2 t+1
$$

At $t=2$ hours the height of water is $h(2)=6 \mathrm{ft}$ and is changing at $h^{\prime}(2)=5 \mathrm{ft} / \mathrm{hr}$. The volume of water is changing at $V^{\prime}(6)=12 \pi \mathrm{ft}^{3} \mathrm{per}$ foot of water height. Therefore, the rate of change of volume is

$$
\frac{d V}{d t}=\frac{d V}{d h} \frac{d h}{d t}=\left(12 \pi \frac{\mathrm{ft}^{3}}{\mathrm{ft}}\right)\left(5 \frac{\mathrm{ft}}{\text { hour }}\right)=60 \pi \frac{\mathrm{feet}^{3}}{\text { hour }}
$$

The Power Rule and the Chain Rule
If n is any real number and $u=g(x)$ is differentiable, then

$$
\frac{d}{d x}\left(u^{n}\right)=n u^{n-1} \frac{d u}{d x} \quad \frac{d}{d x}[g(x)]^{n}=n[g(x)]^{n-1} g^{\prime}(x)
$$

Example V

(I) $\frac{d}{d x}\left(\left(x^{3}-1\right)^{100}\right)=300 x^{2}\left(x^{3}-1\right)^{99}$
(II) $\frac{d}{d x}(\sqrt{f(x)})=\frac{f^{\prime}(x)}{2 \sqrt{f(x)}}$

Example VI

$$
f^{\prime}(x)= \begin{cases}1 & \text { if } 0<x<3 \\ -2 & \text { if } 3<x<5\end{cases}
$$

$$
g^{\prime}(x)= \begin{cases}-1 / 2 & \text { if } 0<x<4 \\ 1 & \text { if } 4<x<5\end{cases}
$$

(I) Let $h(x)=f(g(x))$. Find $h^{\prime}(2)$.

$$
h^{\prime}(2)=f^{\prime}(g(2)) g^{\prime}(2)=f^{\prime}(4) g^{\prime}(2)=(-2)(-1 / 2)=1
$$

(II) Let $h(x)=f\left(x^{2}\right) g(x+1)$. Find $h^{\prime}(2)$.

$$
\begin{array}{ll}
h^{\prime}(x)=f\left(x^{2}\right) g^{\prime}(x+1)+2 x f^{\prime}\left(x^{2}\right) g(x+1) \\
h^{\prime}(2)=f(4) g^{\prime}(3)^{3}+4 f^{\prime}(4) g(3)^{3.5}
\end{array} \Longrightarrow h^{\prime}(2)=-29.5
$$

